
Introduction

Up until now, we've looked at stateless and stateful firewalls. Remember, stateless firewalls only have the
features of a given packet to use as criteria for whether that packet should be passed, blocked, or logged. With
a stateful firewall, in addition to the fields in that packet, we also have access to the kernel's table of open
connections to use in deciding the fate of this packet.

There's a problem, though. Picture an attacker that has launched attacks against almost every port on our web
server box for the past half hour. The firewall has successfully repelled all of them, but now the attacker turns
her attentions to port 80. All of the hostile overflow attempts are let through unhindered. Why? Because the
firewall ruleset allows all traffic to the web server through, and our firewall can't remember the fact that this
IP address has been pounding all the other ports on the system.

What if we could tell the firewall to remember the IP address of attackers and block them for a short period of
time following their last attack? By remembering their past actions, we can block incoming web server
connections that would otherwise have been allowed.

Iptables modules

The firewall code in the current Linux kernel (http://www.netfilter.org) is called Iptables or Netfilter (while
there is a technical distinction, they're equivalent names for this discussion). The crucial feature of this
firewall is its modular design. You have the ability to add new types of tests to perform on a packet and
actions to take on it. These tests and action modules can be added to a running kernel.

For example, lets say you want to discard all packets that have any ipv4 options set. The stock kernel doesn't
have a test for this. However, someone has written a firewall module that can perform this test. Once the
module is compiled for and inserted into the current kernel, the following firewall command:

iptables −A INPUT −m ipv4options −−any−opt −j DROP

will discard these packets. Conveniently, there's even a new target module that can strip off these headers if
compiled and invoked like so:

iptables −t mangle −A PREROUTING −j IPV4OPTSSTRIP

Note that the kernel, as booted, had neither the ability to recognize (the first command above) nor strip (the
second command) ipv4 options. These capabilities were provided by the ipv4options and IPV4OPTSSTRIP
loadable kernel modules (lowercase modules are tests and uppercase modules are targets, by convention).

Categorizing attackers with the recent module

We're going to make use of the recent firewall module. We need to make use of this in two ways; first, to
identify the IP address of malicious attackers, and second, to punish them in some fashion.

We're going to use the following tests to identify the malicious traffic.

iptables −A INPUT −p tcp −d my.mail.server −−dport 25 −−tcp−flags ACK \
 ACK −m string −−string "rcpt to: decode" \
 −j LOG −−log−prefix " SID664 "

Adaptive firewalls with iptables

Introduction 1

http://www.netfilter.org
http://www.stearns.org/pomlist/0.2.2-output/pom-combined.html#ipv4options
http://www.stearns.org/pomlist/0.2.2-output/pom-combined.html#IPV4OPTSSTRIP
http://www.stearns.org/pomlist/0.2.2-output/pom-combined.html#recent

iptables −A INPUT −p tcp −d my.mail.server −−dport 25 −−tcp−flags ACK \
 ACK −m string −−string "rcpt to: decode" \
 −m recent −−name MAILPROBER −−set

iptables −A INPUT −p tcp −d my.mail.server −−dport 25 −−tcp−flags ACK \
 ACK −m string −−string "rcpt to: decode" \
 −j REJECT −−reject−with tcp−reset

"SMTP sendmail 5.6.4 exploit" nocase−ignored arachnids,121 classtype:attempted−admin sid:664

This rule is from the http://www.stearns.org/snort2iptables/ project which provides roughly equivalent
iptables firewall rules from the Snort IDS ruleset.

The first two lines of each command identify the malicious traffic. In this case, we have traffic header for the
smtp port on our mail server with the ACK flag set and the phrase "rcpt to: decode" in the packet. The first
rule simply logs the traffic to syslog. The second rule is the one that records the source address of this packet
in a kernel table called MAILPROBERS. The final rule is the only one that actually decides the fate of this
packet; the packet is discarded and a tcp reset is sent back to the sender.

The first and third rules are concerned with what to do with this packet. The second rule is solely interested in
remembering the attackers IP address for future punishments. OK, let's punish them:

iptables −A INPUT −m recent −−name MAILPROBER −j DROP

This one is placed near the top of the firewall, but after any "iptables −A INPUT −m state −−state
ESTABLISHED,RELATED −j ACCEPT" rules. The rule sees if the source address of a new packet is in the
MAILPROBER IP address list in the kernel. If it is, the packet is discarded. Here's the first time we've been
able to use someone's past actions to block their future connections.

The above punishment is a little harsh, though. The fact that someone tried an old exploit 3 hours ago doesn't
mean that IP address should be blocked from any communication with anyone in our network forever, which
is the end result of the above DROP rule. If for no other reason, the attack might have come from a dialup IP
address; the next person to acquire that address may simply want to retrieve a web page, and is now blocked
because his predecessor was mildy hostile a while back.

Lets tone down the punishment a little:

iptables −A INPUT −m recent −−name MAILPROBER −−seconds 180 −j DROP

We'll ignore the attcker for 3 minutes, but after that we'll allow more packets in and see if they'll play nice
again.

See the http://www.stearns.org/snort2iptables/ website and the psd port scan detector module for some more
ideas of traffic to seed the attackers lists in recent. I'd strongly discourage using anything but established tcp
session traffic, even though a good portion of the snort2iptables ruleset is udp, icmp or other protocols as
non−tcp protocols are easier to spoof than tcp.

The Marquis De Sade, or punishments galore

So far we've put in a three minute block on this individual. Here are some other punishments to consider for
more or less severe offenses. Simply replace the "−j DROP" above with one of the following. Note that one
can log any packet by simply putting in a a log rule (see above for an example) ahead of the rule that decides

Adaptive firewalls with iptables

The Marquis De Sade, or punishments galore 2

http://www.stearns.org/snort2iptables/
http://www.snort.org
http://www.stearns.org/snort2iptables/
http://www.stearns.org/pomlist/0.2.2-output/pom-combined.html#psd

what to do with the packet.

... −j REJECT
Like DROP, but it lets the attacker know her connections are being shot down. In many ways, this is
more network−friendly as you're closing at least one end of the conversation somewhat cleanly.
REJECT has a number of different methods of shutting down connections; see "iptables −j REJECT
−h" for a list with brief descriptions.

... −p tcp −m iplimit −−iplimit−above 2 −j REJECT −−reject−with tcp−reset

... −p udp −m iplimit −−iplimit−above 2 −j REJECT −−reject−with proto−unreach

... −m iplimit −−iplimit−above 2 −j REJECT −−reject−with host−unreach
This triplet using the iplimit module might be appropriate for people that open up large numbers of
connections to your machine; getright users come to mind. The first and second connections from an
IP address come in just fine, but third and future connections get shot down in a protocol appropriate
way.

... −m random −−average 25 −j DROP
Up until now, when we've decided to shun someone, it has been entire. Instead of dropping all their
packets, how about randomly dropping 25% of them? The built in retransmissions in TCP will keep
the conversation going (as may application level reliability mechanisms in UDP), but this has the
effect of slowing down the connversation in the same way that a lossy line will. Good for bandwidth
hogs. :−) The nth module will perform the same task as random.

... −m state −−state NEW −j DNAT −−to−destination 1.2.3.4:5555
OK, we've identified this person as an attacker. How about shunting her future connections into the
waiting honeypot on IP address 1.2.3.4, port 5555?

... −j ULOG
Instead of logging a short description of the packet to syslog, lets log the entire packet to userspace. In
addition to the ulog module, you'll also need to set up the userspace application to receive the packets.

... −j MIRROR
I include this in the interest of being complete, but this target serves almost no functional purpose.
Shipping the attackers packets back to them with source and destination IP addresses and ports
swapped chews up bandwidth, lets them know that you're annoyed, fills up the connection table on
any intermediate firewalls twice as fast, and might be grounds for them to claim you are portscanning
them. *sigh*

Pitfalls and considerations

The above sounds great − get the firewall to rememeber attackers and apply an instant block or other
punishment. It's not without its problems, though. You need to pay attention to the following if you would like
to make use of this approach.

Spoofed source addresses: tcp, established only

We're basing our choice of whether to punish someone on their source IP address; its analagous to blocking
incoming calls based on their caller ID number. Unlike that caller ID on the phone which should always
match the number of the person calling, IP addresses can be trivially spoofed. Lets say Eve, the Evil attacker,
knew you were using this technique to block all conversations with people who send even a single packet to
port 27374 on your web server. Eve creates a bogus packet with its source IP address replaced with the IP
address of your name server. Your firewall remembers this and dutifully blocks all conversations with − gulp
− your name server. Oops, no more dns service for you.

Adaptive firewalls with iptables

Pitfalls and considerations 3

http://www.stearns.org/pomlist/0.2.2-output/pom-combined.html#iplimit
http://www.stearns.org/pomlist/0.2.2-output/pom-combined.html#random
http://www.stearns.org/pomlist/0.2.2-output/pom-combined.html#nth
http://alpinista.dyndns.org:81/files/
http://www.stearns.org/pomlist/0.2.2-output/pom-combined.html#ulog
http://www.gnumonks.org/projects/ulogd

If you limit your "Is this IP address attacking me?" rules to inspecting established tcp sessions, the risk of
spoofed source addresses drops because the attacker needs to put in a good deal more effort to spoof these.
Even with this extra caution, you need to realize that spoofing may still be possible.

Zombie servers (and clients with DROP)

When using the "−j REJECT" target, the firewall in the middle will send a notification to the attacker that the
communication is being dropped or that the host is unreachable (even if it really is reachable). The attacker
can now shut down that connection and quickly reclaim the memory used. The server, however, is left in the
dark; it gets no signal that the connection is now dead and waits for a timeout to occur before closing the
connection and freeing up the memory used.

If large numbers of connections are shut down in this fashion, you may find that a lot of servers are left
hanging around in memory. With a small number of servers, those inactive pieces of code can be moved out
into swap, tying up a small amount of disk bandwidth, but with a large number, you may exhaust the available
memory, which can lead to killing random processes.

At the very least, you'll want to allocate more disk space for swap usage during a large attack. It may also be
appropriate to instruct your Operating System kernel and/or applications to reduce their timeouts so they close
connections more quickly.

Small recent ip list

By default, the module will only remember 100 attacking IP addresses per list (MAILPROBER, above, for
example). On a system being actively attacked from a number of locations, this won't be enough. When the
module is first inserted, you should think about how many IP's to remember and provide that on the command
line with something like:

modprobe ipt_recent ip_list_tot=1000

You'll use more memory with this approach, but I'm all for having the firewall do more work for me in
exchange for a inexpensive ram.

Manual viewing and manipulation with /proc

The proc filesystem holds a readable, and even modifiable, list of IP addresses in each of your lists. This
allows you to manually add or remove IP's, clear the table, or do additional checks or logs from a userspace
program.

William is an Open−Source developer, enthusiast, and advocate from New Hampshire, USA. His day job at
SANS pays him to work on network security and Linux projects.

This article is Copyright 2002, William Stearns <wstearns@pobox.com>

Adaptive firewalls with iptables

Zombie servers (and clients with DROP) 4

mailto:wstearns@pobox.com
http://www.stearns.org/
http://www.sans.org/

