
Tunneling through a corporate gateway

At one site where I provide technical assistance, access to the network is all done via ssh over the Internet.
However, one can't get access to the machines directly; one must first make an ssh connection to a gateway
box I'll call martha. martha doesn't allow one to use regular passwords or keys, though. We're all given a
one−time password devices the size of a credit card. When we ssh to martha, it asks us for our one−time
password. The card displays a random password which we then type into the martha's password prompt. At
that point we're into the system.

As the name implies, the one−time password we get from our cards can only be used once. If I tried to use
that password again, martha would not let me in. This protects me from someone looking over my shoulder as
I log in and trying to use that same password to get in a few minutes later.

The problem comes when I want to do anything useful with this network. Lets say I'm trying to kill a process
that's using too much processor time on waldo, our web server. Step 1: in an unused terminal window I ssh to
martha. I enter my PIN number on the credit card and type the password it displays to get a shell prompt on
martha. Step 2: I then type "ssh waldo" to get a shell prompt on waldo (as I've already installed my ssh key
there; read on if you'd like an easy way to install keys). Step 3: Then I type "su −" and enter the root password
to become root. Then I can type "killall −TERM runaway_app_name ; sleep 2 ; killall −9
runaway_app_name" to kill it off.

That terminal is certainly available to run other commands now, but if I want to connect to a different
protected machine at the same time, I have to do the above all over again, including opening a new connection
to martha with the requisite one−time password. This is hardly conducive to managing large numbers of
machines at once.

What I'd ideally like is a way to get directly to the target machine without having to log into martha every
time. As I respect, and frankly agree with, the one−time password approach, I'm not looking to get around this
stronger authentication method but simply wish to avoid having to log into martha each time I want a new ssh
connection to some other machine.

Here's the approach we'll take. I'll first log in to martha once. Assuming there are 5 machines behind martha to
which I may wish to ssh, I'm going to forward 5 local ports to the ssh ports on each of those machines. So, for
example, localhost port 22005 will be forwarded to port 22 on 192.168.0.5, localhost port 22006 will be
forwarded to port 22 on 192.168.0.6, and so on up to port 22009 being port forwarded to port 22 on
192.168.0.9. The choice of local ports is arbitrary; I'm simply matching the last octet of the address as a way
of organizing the ports.

I leave the terminal to martha open for the entire time I'm doing work with the other systems. I can leave some
program running on that terminal or I can leave it idle at a command prompt, it doesn't matter.

To ssh to waldo (ip address 192.168.0.6), I instead type "ssh localhost 22006". The ssh connection gets
tunneled to martha, who carries the packets over to waldo's ssh port. At that point, my ssh client program can
log into waldo.

To open another session to waldo, I can type "ssh localhost 22006" again, without having to open another
connection to martha. Similarly, I can open any number of connections to our database server (Darma, ip
address 192.168.0.7) by typing "ssh localhost 22007".

SSH advanced techniques, part II

Tunneling through a corporate gateway 1

This approach allows me to authenticate myself once with a one−time password, but make multiple
connections to any number of machines behind the gateway box directly. There's some overhead in that all
connections to machines behind martha are encrypted twice by the local machine, but this is probably not a
problem.

Let's actually set this up and try it out. While my previous port forwarding examples used additional
parameters on the "ssh martha" command line, we're going to do all this port forwarding in ~/.ssh/config . The
following examples assume you're using Openssh; if you're using a different version of ssh, check your
documentation to see if there are any changes in file location or syntax.

In ~/.ssh/config , add the following lines:

Host martha
#blinky
 LocalForward 22005 192.168.0.5
#waldo
 LocalForward 22006 192.168.0.6
#darma
 LocalForward 22007 192.168.0.7
#annabelle
 LocalForward 22008 192.168.0.8
#endor
 LocalForward 22009 192.168.0.9

This says that when we first open a connection to martha, we want that ssh session to listen on all local ports
from 22005 to 22034. Now let's add some sections that make the connections to the protected machines
easier:

Host blinky
 Hostname localhost
 Port 22005
 HostKeyAlias blinky
Host waldo
 Hostname localhost
 Port 22006
 HostKeyAlias waldo
Host darma
 Hostname localhost
 Port 22007
 HostKeyAlias darma
Host annabelle
 Hostname localhost
 Port 22008
 HostKeyAlias annabelle
 User william
Host endor
 Hostname localhost
 Port 22009
 HostKeyAlias endor
Host *
 Protocol 2
 User wstearns
 Compression yes
 IdentityFile /home/wstearns/.ssh/id_dsa

Now when I type "ssh waldo", the ssh client program doesn't try to make a connection directly to waldo's IP
address. Instead, it looks in ~/.ssh/config and figures out that it needs to connect to localhost, port 22006.

SSH advanced techniques, part II

Tunneling through a corporate gateway 2

When it connects, it will associate the name waldo, instead of localhost, with the host key it will store in
~/.ssh/known_hosts . In addition, it will pull the following defaults from the "Host *" section: use ssh protocol
2, assume the target user is wstearns, compress the data being sent, and try to get an ssh key from id_dsa if the
ssh−agent doesn't have one.

The defaults in the "Host *" section can be overridden, as we've done for annabelle's section as my username
on annabelle is "william", not wstearns. We can also override the defaults and the Host specific sections with
commands on the command line; for example, "ssh root@annabelle" will ignore the "User wstearns" and the
"User william" lines and instead try to log in directly as root.

Once we've made our one connection to martha, connecting to waldo or any of the other machines is as simple
as typing "ssh waldo". To get a root prompt on waldo, "ssh root@waldo" will suffice. Even the scp (secure
copy program) can now work; "scp −p /website/index.html waldo:/var/www/index.html" will send a file right
to waldo. Without the above port forwarding trick, I would have had to scp it first to martha, then scp it from
martha to waldo.

fanout

What happens when I want to run one command on multiple machines? Perhaps I want to see who's logged
into the 5 main servers. To check just one machine, I would have typed:

ssh blinky w

Instead of giving me a command prompt, the ssh program opens up a connection, logs me in automatically (as
I'm using ssh−agent and ssh keys), runs the "w" progam, and then logs out automatically. Quite useful for
running a single command line program.

For 5 machines, then:

ssh blinky w
ssh waldo w
ssh darma w
ssh annabelle w
ssh endor w

Still not too bad. Unfortunately, that's going to get very old very fast when I have to run 30 commands on 100
machines. :−)

Lets get the computer to do the work. I want to give a command to run and a list of machines to run it on and
come back to an orderly output of what's going on on those machines. fanout is the tool for the task.

fanout −−noping 'blinky waldo darma annabelle endor' 'w' | less

We specify −−noping as the first parameter because fanout usually wants to ping the target machines first to
see if they're alive; as we're playing port forwarding tricks, the machines aren't really reachable by ping, so we
tell fanout to connect without pinging first. The next parameter is a list of machines to which to connect. The
last parameter is the command to run on all. Here's what we get back:

Starting blinky
Starting waldo
Starting darma
Starting annabelle

SSH advanced techniques, part II

fanout 3

http://www.stearns.org/fanout

Starting endor

, then a brief pause as fanout runs the command on each target machine, then:

Fanout executing "w"
Start time Tue Aug 20 00:04:04 EDT 2002 , End time Tue Aug 20 00:04:18 EDT 2002
==== On blinky ====
 12:04am up 75 days, 8:08, 0 users, load average: 0.00, 0.00, 0.00
 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

==== On waldo ====
 12:04am up 39 days, 14:31, 2 users, load average: 0.03, 0.04, 0.00
 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
 bparker pts/0 martha Fri 8am 3days 0.18s 0.13s −bash
 bparker pts/1 martha 1:00pm 2:27m 0.16s 0.09s −bash

==== On darma ====
 12:04am up 123 days, 12:38, 1 user, load average: 0.93, 0.39, 0.14
 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
 bparker pts/0 martha Mon 7am 1:48m 0.06s 0.06s −bash

==== On annabelle ====
 12:04am up 39 days, 17:54, 2 users, load average: 2.37, 2.06, 1.98
 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
 wstearns pts/0 martha Sat12pm 9:39m 2.14s 1.15s −bash
 wstearns pts/1 martha 11Aug02 2:49m 1.84s 0.86s −bash

==== On endor ====
 12:04am up 101 days, 7:15, 2 users, load average: 0.00, 0.00, 0.00
 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

Now I have a concise summary of who's logged into the servers.

Note that this approach doesn't work for interactive commands. In fact, it won't work if you even have to type
a password for ssh; that's why I'm encouraging you to use keys and ssh−agent. I couldn't run an editor on
multiple machines at a time with fanout. However, there are lots of commands that work just fine
non−interactively; here are some examples:

fanout −−noping "blinky waldo" 'if [−f /var/log/dmesg]; then cat /var/log/dmesg ; else dmesg ; fi' | less
See dmesg boot output, falling back on current dmesg info if your distribution doesn't store it.

fanout −−noping "blinky waldo" 'df' | less
How much disk space is left?

fanout −−noping "blinky waldo" "df | egrep '(100%|[7−9][0−9]%)'" | less
Are any of my partitions 70% full or more?

fanout −−noping "blinky waldo" 'echo My PID is \"\$PPID\"' | less
Look at an environment variable in the remote shell.

fanout −−noping "blinky waldo" "/sbin/ifconfig | grep 'inet addr'" | less
What IP addresses are live on this system?

fanout −−noping "blinky waldo" 'last −a | head −−lines=20' | less
Who has recently logged in?

fanout −−noping "blinky waldo" 'locate formmail' | less
Is the formmail program anywhere on the system?

fanout −−noping "blinky waldo" 'ps axf' | less
What tasks are running now?

fanout −−noping "blinky waldo" 'rpm −q redhat−release' | less
What version of redhat am I running?

SSH advanced techniques, part II

fanout 4

fanout −−noping "blinky waldo" 'rpm −qa | grep −i openssl' | less
What openssl rpm versions are installed?

fanout −−noping "blinky waldo" 'sudo rpm −U /tmp/openssl*' | less
Upgrade the openssl rpms with the new files in /tmp. Note that rpm will also accept ftp://... and
http://... URLs for the files, so you don't have to pull them down in advance.

fanout −−noping "blinky waldo" 'uname −a' | less
What kernels am I running on these systems?

fanout −−noping "blinky waldo" 'uptime' | less
How long have the systems been up? Good for checking if any have been rebooted recently.

fanout −−noping "blinky waldo" 'w | grep tty' 2>/dev/null | less
Who's logged in on one of the text terminals?

fanout −−noping "blinky waldo" 'w | grep pty' 2>/dev/null | less
Who's logged in from the network?

fanout −−noping "blinky waldo" 'whoami' | less
returns your regular user account name if your key is correctly in place.

fanout −−noping "blinky waldo" 'sudo whoami' | less
returns "root" if you have your key is in place and you have the sudo rights to run whoami as root
without a password.

fanout −−noping "blinky waldo" "uname −a ; (if [−f /var/log/dmesg]; then cat /var/log/dmesg ; else dmesg
; fi) | egrep −i '(hd[a−h]|sd[a−h])' ; ls −al /proc/kcore ; cat /proc/cpuinfo" | less

Pulls kernel, drive, memory, and processor info.
fanout −−noping "blinky waldo" "uname −a ; rpm −qa | egrep −i '(openlinux|redhat−release)' ; uptime ; df
−P / ; netstat −a | grep '*:*'" | less

Pulls kernel, OS version, uptime, free disk space on the root partition, and all listening ports on the
system.

The following doesn't work:
fanout −−noping "blinky waldo" 'sudo echo 0 >/proc/sys/net/ipv4/tcp_ecn' | less

This looks like a good way to echo a "0" into the kernel location that controls ECN (Explicit
Congestion Notification). The problem is that although the echo command is run as root, the shell
that's running it and handling the ">" redirection is still running as a normal user. It turns out there's a
way around this; the "dd" command:

But this one does:
fanout −−noping "blinky waldo" 'echo 0 | sudo dd of=/proc/sys/net/ipv4/tcp_ecn' | less

Since the dd command opens its own files after it's started as root, if can successfully open
/proc/sys/net/ipv4/tcp_ecn for writing.

fanout −−noping "blinky waldo" '[`cat /etc/passwd | grep "^bparker:" | wc −l` −eq 0] &sudo adduser
bparker' | less

With this one, we want to make sure bparker has an account on both systems, but we don't want to try
to create another one if she already has one. The section from [to] tests to see if the account doesn't
exist; if it doesn't, we adduser bparker. In the test, we count the number of lines in /etc/passwd that
have "bparker:" at the beginning of the line; if this equals 0, we know the account doesn't exist.

fanout −−noping "blinky waldo" 'if [`cat /etc/passwd | grep "^bparker:" | wc −l` −eq 0]; then echo No
bparker account, making one. ; sudo adduser bparker ; else echo bparker has an account ; fi' | less

By using bash's if − then − else − fi block, we can specify what to do in the cases that bparker has or
does not have an account.

SSH advanced techniques, part II

fanout 5

Sudo, all the way up to root without a password

While most of the "look at the system" commands above could be run as myself, there are still some that need
to be run as root. I've written about sudo in the past, but in that article I showed you how to run commands
with sudo in a way that required the user password. Unfortunately, fanout really wants to run commands that
don't require any input whatsoever, even a user password. Is there a way to run sudo without requiring the
user to enter any password at all?

Yes, and it all depends on that users line in /etc/sudoers. To grant "user password required" privileges:

wstearns ALL=(root) PASSWD: /bin/dd,/sbin/insmod,/sbin/ip,/sbin/tc,/usr/sbin/wshaper,/sbin/iptables,/sbin/route

The above lets me run the above 7 commands as root, but when I try, it will ask me to enter my user
password.

On the other hand, to grant "no password needed at all" privileges:

wstearns ALL=(root) NOPASSWD: /bin/dd,/sbin/insmod,/sbin/ip,/sbin/tc,/usr/sbin/wshaper,/sbin/iptables,/sbin/route

Now I can run those same commands, but I'm no longer prompted for my password at all.

You can have a mix where some commands require a password, others do not:

wstearns ALL=(root) PASSWD: ALL, NOPASSWD: /bin/dd,/sbin/insmod,/sbin/ip,/sbin/tc,/usr/sbin/wshaper,/sbin/iptables,/sbin/route

With this line I can run anything I wish as root using sudo. If I run one of the seven commands, I don't need to
enter a password, but I do need my user password if I want to run anything else.

Portnames − the icing on the cake

When I use "netstat −a" to see what network connections are open, I usually see the remote IP address or
hostname in the listing. This tells me where my connections are going. Unfortunately, as far as netstat is
concerned, all our ssh connections (except the one to martha) are to localhost. How can we keep them straight
in the netstat listing?

We'll label the ports. Simply add the following lines to /etc/services:

blinky−fwd 22005/tcp
waldo−fwd 22006/tcp
darma−fwd 22007/tcp
annabelle−fwd 22008/tcp
endor−fwd 22009/tcp

Now the "netstat −a" output includes a reminder of listening ports and open connections:

[root@sparrow etc]# netstat −a
Active Internet connections (servers and established)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 localhost:blinky−fwd *:* LISTEN
tcp 0 0 localhost:waldo−fwd *:* LISTEN
tcp 0 0 localhost:darma−fwd *:* LISTEN
tcp 0 0 localhost:annabelle−fwd *:* LISTEN
tcp 0 0 localhost:endor−fwd *:* LISTEN

SSH advanced techniques, part II

Sudo, all the way up to root without a password 6

http://www.stearns.org/doc/sudo.current.html

tcp 0 0 localhost:47914 localhost:waldo−fwd ESTABLISHED
...

The first 5 are the ports ready to accept connections; the last is an established connection to waldo.

Installing ssh keys − the easy way

I mentioned using ssh keys in an earlier article. With the ssh1 protocol, installing keys is reasonably
straightforward; the target directory and filename stay constant; the public key is always copied, verbatim, to
~/.ssh/authorized_keys on the ssh server. As long as you remember that and remember to check the ownership
and permissions on that file, your home directory, and ~/.ssh, this approach works well.

The problem is that the ssh1 has some problems that make it significantly less secure than the ssh2 protocol;
we should all be working to get away from ssh1.

ssh2 clients and servers can use keys as well, but there are some problems with ssh2's keys. Openssh and
commercial ssh2 (both of which support the ssh2 protocol) use different file formats and filenames for their
private and public keys. In some cases, two files have to be created on the server.

O'Reilly's "SSH: The Definitive Guide" covers keys in marvelous detail if you want to know the gory details,
and they are quite gory. Most of us, however, would much rather get a tool to do the work for us as opposed to
learning how to get two programs to interoperate. As always, I have an easy way out. :−)

The ssh−keyinstall utility does all the work for you. It can test for which protocol to use, knows where the
public key should go, and knows whether the public key needs to be converted before it can be used.

Lets say you've been using a password to get access to www.goober.org all this time, but now want to use ssh
keys, perhaps so you can use fanout as we've shown above.

Pull down the ssh−keyinstall utility and install it. If your local username and your username at www are the
same, running it is as simple as typing "ssh−keyinstall −s www.goober.org". I'll annotate a sample run:

[test@sparrow test]$ ssh−keyinstall −s www.goober.org
ssh−keyinstall, version 0.1.9

Please report any successes or failures to wstearns@pobox.com . Please
note the client and server ssh versions, type of key used (rsa=ssh
protocol 1 or dsa=ssh protocol 2), whether you created a new key or used
an existing key, and whether you forced a particular remote command and
send that information to William at the above address as he is hoping to
test every combination.
Please enter a truly hard to guess passphrase.
Generating public/private dsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Here's where you assign a passphrase to the private key; this encrypts it on the disk only. Before you can use
the private key, you'll be asked to enter the passphrase. This should be sentence length, upper and lowercase
letters, with strange characters and digits mixed in.

Your identification has been saved in /home/test/.ssh/id_dsa.
Your public key has been saved in /home/test/.ssh/id_dsa.pub.
The key fingerprint is:
f6:5d:50:78:67:66:1d:47:c4:44:f6:1c:2b:fd:52:2b test@sparrow.stearns.org

SSH advanced techniques, part II

Installing ssh keys − the easy way 7

http://www.stearns.org/ssh-keyinstall/
http://www.stearns.org/ssh-keyinstall/

The key has been created for you.

You will be asked to enter your remote password for each of the
following commands. If you disagree with a particular command, or simply
wish to perform it yourself, enter an incorrect password.
+ ssh test@www.goober.org 'chmod 700 ~ ; mkdir −p ~/.ssh ; chmod 700 ~/.ssh ; rm −f ~/.ssh/newpubkey ~/.ssh/authorized_keys2.temp ; [−f ~/.ssh/authorized_keys2] &cat ~/.ssh/authorized_keys2 >~/.ssh/authorized_keys2.temp'
The authenticity of host 'www.goober.org (192.168.12.13)' can't be established.
RSA key fingerprint is 47:ef:9d:f7:d8:67:e9:95:27:06:90:80:00:36:c8:3d.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'www.goober.org' (RSA) to the list of known hosts.

You'll see the above warning and check if this is the first time you've connected to the target machine. Enter
yes only if you're quite sure this is the machine to which you wanted to connect.

test@www.goober.org's password:
+ '[' −n '' ']'
+ '[' −n /home/test/.ssh/id_dsa.pub ']'
+ scp /home/test/.ssh/id_dsa.pub test@www.goober.org:.ssh/newpubkey
test@www.goober.org's password:
id_dsa.pub 0% | | 0 −−:−− ETAid_dsa.pub 100% |*****************************| 614 00:00
+ ssh test@www.goober.org 'cat ~/.ssh/newpubkey >>~/.ssh/authorized_keys2.temp'
test@www.goober.org's password:
+ ssh test@www.goober.org 'chmod 600 ~/.ssh/authorized_keys2.temp ; rm −f ~/.ssh/newpubkey ; mv −f ~/.ssh/authorized_keys2.temp ~/.ssh/authorized_keys2'
test@www.goober.org's password:
+ set +x

The installation requires 4−6 seperate ssh or scp connections to the ssh server. Because your key is in the
process of being installed, you'll have to enter your password for each step. The '+' lines show you what
command is about to be run.

The public key has been installed on www.goober.org . If you wish to test
this, you can run the following command, which should prompt you for
your passphrase and return the string HI.
 ssh −l test www.goober.org '/bin/echo HI'
If you are prompted for your remote pass_word_, the key installation did
not work. In this case, please let William Stearns <wstearns@pobox.com>
know of the failure. Please include the ssh client and server versions
and the exact command you just ran.

The program gives us a command line to run to test that the key works; we run it.

[test@sparrow test]$ ssh −l test www.goober.org '/bin/echo HI'
Enter passphrase for key '/home/test/.ssh/id_dsa':
HI
[test@sparrow test]$

At this point, you can set up ssh−agent (see my ssh−agent tutorial for how to do so) and you can make ssh
connections to thousands of machine simultaneously without having to use a password or passphrase.

William is an Open−Source developer, enthusiast, and advocate from New Hampshire, USA. His day job at
SANS pays him to work on network security and Linux projects.

This article is Copyright 2002, William Stearns <wstearns@pobox.com>

SSH advanced techniques, part II

Installing ssh keys − the easy way 8

http://www.stearns.org/doc/ssh-techniques.current.html
mailto:wstearns@pobox.com
http://www.stearns.org/
http://www.sans.org/

